Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Cytotherapy ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38613540

ABSTRACT

Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States. This group developed a consensus opinion for best-practice recommendations, as follows: (i) Diagnosis should include both genetic and biochemical testing; (ii) Early diagnosis and treatment for MLD is associated with improved clinical outcomes; (iii) The panel supported the development of newborn screening to accelerate the time to diagnosis and treatment; (iv) Clinical management of MLD should include specialists familiar with the disease who are able to follow patients longitudinally; (v) In early onset MLD, including late infantile and early juvenile subtypes, ex vivo gene therapy should be considered for presymptomatic patients where available; (vi) In late-onset MLD, including late juvenile and adult subtypes, hematopoietic cell transplant (HCT) should be considered for patients with no or minimal disease involvement. This document summarizes current guidance on the presymptomatic monitoring of children affected by MLD as well as the clinical management of symptomatic patients. Future data-driven evidence and evolution of these recommendations will be important to stratify clinical treatment options and improve clinical care.

2.
Mol Ther ; 32(1): 44-58, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37952085

ABSTRACT

Hematopoietic stem cell transplantation (HSCT) is the only approved treatment for presymptomatic infantile globoid cell leukodystrophy (GLD [Krabbe disease]). However, correction of disease is not complete, and outcomes remain poor. Herein we evaluated HSCT, intravenous (IV) adeno-associated virus rh10 vector (AAVrh10) gene therapy, and combination HSCT + IV AAVrh10 in the canine model of GLD. While HSCT alone resulted in no increase in survival as compared with untreated GLD dogs (∼16 weeks of age), combination HSCT + IV AAVrh10 at a dose of 4E13 genome copies (gc)/kg resulted in delayed disease progression and increased survival beyond 1 year of age. A 5-fold increase in AAVrh10 dose to 2E14 gc/kg, in combination with HSCT, normalized neurological dysfunction up to 2 years of age. IV AAVrh10 alone resulted in an average survival to 41.2 weeks of age. In the peripheral nervous system, IV AAVrh10 alone or in addition to HSCT normalized nerve conduction velocity, improved ultrastructure, and normalized GALC enzyme activity and psychosine concentration. In the central nervous system, only combination therapy at the highest dose was able to restore galactosylceramidase activity and psychosine concentrations to within the normal range. These data have now guided clinical translation of systemic AAV gene therapy as an addition to HSCT (NCT04693598, NCT05739643).


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukodystrophy, Globoid Cell , Dogs , Animals , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/therapy , Galactosylceramidase/genetics , Psychosine , Hematopoietic Stem Cell Transplantation/methods , Genetic Therapy/methods , Disease Models, Animal
3.
Mol Ther Methods Clin Dev ; 30: 303-314, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37601414

ABSTRACT

Gene replacement therapy is a rational therapeutic strategy and clinical intervention for neurodegenerative disorders like Canavan disease, a leukodystrophy caused by biallelic mutations in the aspartoacylase (ASPA) gene. We aimed to investigate whether simultaneous intravenous (i.v.) and intracerebroventricular (i.c.v.) administration of rAAV9-CB6-ASPA provides a safe and effective therapeutic strategy in an open-label, individual-patient, expanded-access trial for Canavan disease. Immunomodulation was given prophylactically prior to adeno-associated virus (AAV) treatment to prevent an immune response to ASPA or the vector capsid. The patient served as his own control, and change from baseline was assessed by clinical pathology tests, vector genomes in the blood, antibodies against ASPA and AAV capsids, levels of cerebrospinal fluid (CSF) N-acetylaspartate (NAA), brain water content and morphology, clinical status, and motor function tests. Two years post treatment, the patient's white matter myelination had increased, motor function was improved, and he remained free of typical severe epilepsy. NAA level was reduced at 3 months and remained stable up to 4 years post treatment. Immunomodulation prior to AAV exposure enables repeat dosing and has prevented an anti-transgene immune response. Dual-route administration of gene therapy may improve treatment outcomes.

4.
Orphanet J Rare Dis ; 18(1): 257, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653408

ABSTRACT

BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) is a rare autosomal recessive genetic disorder of PANK2, which enables mitochondrial synthesis of coenzyme A. Its loss causes neurodegeneration with iron accumulation primarily in motor-related brain areas. Symptoms include dystonia, parkinsonism, and other disabilities. PKAN has been categorized as classic PKAN, with an age of onset ≤ 10 years, rapid progression, and early disability or death; and atypical PKAN, with later onset, slower progression, generally milder, and more diverse symptom manifestations. Available treatments are mostly palliative. Information on the lived experience of patients with PKAN and their caregivers or on community-level disease burden is limited. It is necessary to engage patients as partners to expand our understanding and improve clinical outcomes. This patient-oriented research study used multiple-choice and free-form question surveys distributed by patient organizations to collect information on the manifestations and disease burden of PKAN. It also assessed respondents' experiences and preferences with clinical research to inform future clinical trials. RESULTS: The analysis included 166 surveys. Most respondents (87%) were parents of a patient with PKAN and 7% were patients, with 80% from Europe and North America. The study cohort included 85 patients with classic PKAN (mean ± SD age of onset 4.4 ± 2.79 years), 65 with atypical PKAN (13.8 ± 4.79 years), and 16 identified as "not sure". Respondents reported gait disturbances and dystonia most often in both groups, with 44% unable to walk. The classic PKAN group reported more speech, swallowing, and visual difficulties and more severe motor problems than the atypical PKAN group. Dystonia and speech/swallowing difficulties were reported as the most challenging symptoms. Most respondents reported using multiple medications, primarily anticonvulsants and antiparkinsonian drugs, and about half had participated in a clinical research study. Study participants reported the most difficulties with the physical exertion associated with imaging assessments and travel to assessment sites. CONCLUSIONS: The survey results support the dichotomy between classic and atypical PKAN that extends beyond the age of onset. Inclusion of patients as clinical research partners shows promise as a pathway to improving clinical trials and providing more efficacious PKAN therapies.


Subject(s)
Dystonia , Pantothenate Kinase-Associated Neurodegeneration , Humans , Child , Infant , Child, Preschool , Caregivers , Anticonvulsants , Brain
5.
Front Genet ; 13: 867337, 2022.
Article in English | MEDLINE | ID: mdl-35938011

ABSTRACT

Each year, through population-based newborn screening (NBS), 1 in 294 newborns is identified with a condition leading to early treatment and, in some cases, life-saving interventions. Rapid advancements in genomic technologies to screen, diagnose, and treat newborns promise to significantly expand the number of diseases and individuals impacted by NBS. However, expansion of NBS occurs slowly in the United States (US) and almost always occurs condition by condition and state by state with the goal of screening for all conditions on a federally recommended uniform panel. The Newborn Screening Translational Research Network (NBSTRN) conducted the NBS Expansion Study to describe current practices, identify expansion challenges, outline areas for improvement in NBS, and suggest how models could be used to evaluate changes and improvements. The NBS Expansion Study included a workshop of experts, a survey of clinicians, an analysis of data from online repositories of state NBS programs, reports and publications of completed pilots, federal committee reports, and proceedings, and the development of models to address the study findings. This manuscript (Part One) reports on the design, execution, and results of the NBS Expansion Study. The Study found that the capacity to expand NBS is variable across the US and that nationwide adoption of a new condition averages 9.5 years. Four factors that delay and/or complicate NBS expansion were identified. A companion paper (Part Two) presents a use case for each of the four factors and highlights how modeling could address these challenges to NBS expansion.

6.
Int J Mol Sci ; 23(16)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36012705

ABSTRACT

Globoid cell leukodystrophy (GLD), or Krabbe disease, is a neurodegenerative sphingolipidosis caused by genetic deficiency of lysosomal ß-galactosylceramidase (GALC), characterized by neuroinflammation and demyelination of the central (CNS) and peripheral nervous system. The acute phase protein long pentraxin-3 (PTX3) is a soluble pattern recognition receptor and a regulator of innate immunity. Growing evidence points to the involvement of PTX3 in neurodegeneration. However, the expression and role of PTX3 in the neurodegenerative/neuroinflammatory processes that characterize GLD remain unexplored. Here, immunohistochemical analysis of brain samples from Krabbe patients showed that macrophages and globoid cells are intensely immunoreactive for PTX3. Accordingly, Ptx3 expression increases throughout the course of the disease in the cerebrum, cerebellum, and spinal cord of GALC-deficient twitcher (Galctwi/twi) mice, an authentic animal model of GLD. This was paralleled by the upregulation of proinflammatory genes and M1-polarized macrophage/microglia markers and of the levels of PTX3 protein in CNS and plasma of twitcher animals. Crossing of Galctwi/twi mice with transgenic PTX3 overexpressing animals (hPTX3 mice) demonstrated that constitutive PTX3 overexpression reduced the severity of clinical signs and the upregulation of proinflammatory genes in the spinal cord of P35 hPTX3/Galctwi/twi mice when compared to Galctwi/twi littermates, leading to a limited increase of their life span. However, this occurred in the absence of a significant impact on the histopathological findings and on the accumulation of the neurotoxic metabolite psychosine when evaluated at this late time point of the disease. In conclusion, our results provide the first evidence that PTX3 is produced in the CNS of GALC-deficient Krabbe patients and twitcher mice. PTX3 may exert a protective role by reducing the neuroinflammatory response that occurs in the spinal cord of GALC-deficient animals.


Subject(s)
C-Reactive Protein , Galactosylceramidase , Leukodystrophy, Globoid Cell , Nerve Tissue Proteins , Animals , C-Reactive Protein/genetics , Central Nervous System/metabolism , Disease Models, Animal , Galactosylceramidase/deficiency , Galactosylceramidase/genetics , Humans , Leukodystrophy, Globoid Cell/metabolism , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Psychosine , Up-Regulation
7.
Front Mol Neurosci ; 15: 888231, 2022.
Article in English | MEDLINE | ID: mdl-35966016

ABSTRACT

Objective: Krabbe disease is a fatal leukodystrophy caused by deficiency in galactocerebrosidase enzyme activity. The only currently available therapy is hematopoietic stem cell transplantation with bone marrow or umbilical cord blood (UCBT), which leads to increased lifespan and functional abilities when performed in the preclinical stage. While stabilization of white matter disease has been seen on serial MRI studies, neuropathological changes following transplantation have not been documented so far. Materials and Methods: We report the first postmortem examination of a 15-year-old female patient with infantile Krabbe disease after UCBT in infancy. Results: In contrast to an untreated Krabbe disease brain, which showed severe myelin and oligodendrocyte loss with occasional globoid cells, the transplanted brain displayed markedly improved myelin preservation, but not reaching normal myelination levels. Consistent with the transplanted patient's clinical presentation of pronounced deficits in gross motor skills, corticospinal tracts were most severely affected. No globoid cells or evidence of active demyelination were observed in the central nervous system, indicative of at least partially successful functional restoration. This was corroborated by the identification of male donor-derived cells in the brain by in situ hybridization. Unlike the observed disease stabilization in the central nervous system, the patient experienced progressive peripheral neuropathy. While diminished macrophage infiltration was seen postmortem, peripheral nerves exhibited edema, myelin and axon loss and persistent Schwann cell ultrastructural inclusions. Conclusion: Umbilical cord blood transplantation was able to alter the natural disease progression in the central but less so in the peripheral nervous system, possibly due to limited cross-correction of Schwann cells.

8.
Eur J Hum Genet ; 30(8): 984-988, 2022 08.
Article in English | MEDLINE | ID: mdl-35581417

ABSTRACT

Krabbe disease (KD) is a rare lysosomal storage disorder caused by biallelic pathogenic variants in GALC. Most patients manifest the severe classic early-infantile form, while a small percentage of cases have later-onset types. We present two siblings with atypical clinical and neuroimaging phenotypes, compared to the classification of KD, who were found to carry biallelic loss-of-function GALC variants, including a recurrent 30 kb deletion and a previously unreported deep intronic variant that was identified by mRNA sequencing. This family represents a unique description in the KD literature and contributes to expanding the clinical and molecular spectra of this rare disorder.


Subject(s)
Leukodystrophy, Globoid Cell , Galactosylceramidase/genetics , Humans , Introns , Leukodystrophy, Globoid Cell/genetics , Mutation , Phenotype , Siblings
9.
Metab Brain Dis ; 37(7): 2245-2256, 2022 10.
Article in English | MEDLINE | ID: mdl-35442005

ABSTRACT

Lysosomal storage disorders (LSD) are multisystemic progressive disorders caused by genetic mutations involving lysosomal function. While LSDs are individually considered rare diseases, the overall true prevalence of these disorders is likely higher than our current estimates. More than two third of the LSDs have associated neurodegeneration and the neurological phenotype often defines the course of the disease and treatment outcomes. Addressing the neurological involvement in LSDs has posed a significant challenge in the rapidly evolving field of therapies for these diseases. In this review, we summarize current approaches and clinical trials available for patients with neuronopathic lysosomal storage disorders, exploring the opportunities and challenges that have emerged with each of these.


Subject(s)
Lysosomal Storage Diseases , Humans , Genetic Therapy , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/therapy , Lysosomes , Mutation
10.
J Patient Rep Outcomes ; 6(1): 40, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35467223

ABSTRACT

OBJECTIVES: Sanfilippo syndrome is a rare multisystem disease with no approved treatments. This study explores caregiver perspectives on the most impactful symptoms and patient-relevant clinical outcomes assessments. The pediatric onset and progressive neurodegenerative nature of Sanfilippo limits use of self-report in clinical research. This study obtains Sanfilippo caregiver data to support the selection of fit-for-purpose and patient-relevant clinical outcome assessments (COAs). METHODS: We conducted an asynchronous online focus group (n = 11) followed by individual interviews with caregivers (n = 19) of children with Sanfilippo syndrome. All participants reported on the impact of disease symptoms and level of unmet treatment need across Sanfilippo symptom domains. Focus group participants reviewed existing assessments relating to 8 symptom domains (15 total assessments) and provided feedback on meaningfulness and relevance. Focus group data were used to reduce the number of assessments included in subsequent interviews to 8 COAs across 7 symptom domains: communication, eating, sleep, mobility, pain, behavior and adapting. Interview respondents provided data on meaningfulness and relevance of assessments. Data were coded using an item-tracking matrix. Data summaries were analyzed by caregivers' responses regarding meaningfulness; relevance to Sanfilippo syndrome; and based on caregiver indication of missing or problematic subdomains and items. RESULTS: Participants' children were 2-24 years in age and varied in disease progression. Caregivers reported communication and mobility as highly impactful domains with unmet treatment needs, followed closely by pain and sleep. Domains such as eating, adaptive skills, and behaviors were identified as impactful but with relatively less priority, by comparison. Participants endorsed the relevance of clinical outcome assessments associated with communication, eating, sleep, and pain, and identified them as highly favorable for use in a clinical trial. Participants specified some refinements in existing assessments to best reflect Sanfilippo symptoms and disease course. DISCUSSION: The identification of impactful symptoms to treat and relevant and meaningful clinical outcome assessments supports patient-focused drug development. Our results inform targets for drug development and the selection of primary and secondary outcome assessments with high meaningfulness and face validity to Sanfilippo syndrome caregivers. Assessments identified as less optimal might be refined, replaced, or remain if the clinical trial necessitates.

11.
Mol Genet Metab ; 134(1-2): 53-59, 2021.
Article in English | MEDLINE | ID: mdl-33832819

ABSTRACT

OBJECTIVE: To provide updated evidence and consensus-based recommendations for the classification of individuals who screen positive for Krabbe Disease (KD) and recommendations for long-term follow-up for those who are at risk for late onset Krabbe Disease (LOKD). METHODS: KD experts (KD NBS Council) met between July 2017 and June 2020 to develop consensus-based classification and follow-up recommendations. The resulting newly proposed recommendations were assessed in a historical cohort of 47 newborns from New York State who were originally classified at moderate or high risk for LOKD. RESULTS: Infants identified by newborn screening with possible KD should enter one of three clinical follow-up pathways (Early infantile KD, at-risk for LOKD, or unaffected), based on galactocerebrosidase (GALC) activity, psychosine concentration, and GALC genotype. Patients considered at-risk for LOKD based on low GALC activity and an intermediate psychosine concentration are further split into a high-risk or low-risk follow-up pathway based on genotype. Review of the historical New York State cohort found that the updated follow-up recommendations would reduce follow up testing by 88%. CONCLUSION: The KD NBS Council has presented updated consensus recommendations for efficient and effective classification and follow-up of NBS positive patients with a focus on long-term follow-up of those at-risk for LOKD.


Subject(s)
Consensus , Genotype , Leukodystrophy, Globoid Cell/classification , Leukodystrophy, Globoid Cell/genetics , Neonatal Screening/methods , Practice Guidelines as Topic , Dried Blood Spot Testing , Follow-Up Studies , Humans , Infant , Infant, Newborn , Late Onset Disorders/diagnosis , Late Onset Disorders/etiology , Late Onset Disorders/genetics , Leukodystrophy, Globoid Cell/diagnosis , Risk Factors
12.
Neurol Ther ; 10(1): 197-212, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33263924

ABSTRACT

INTRODUCTION: Sanfilippo syndrome (MPS III) is a rare, degenerative condition characterized by symptoms impacting cognitive ability, mobility, behavior, and quality of life. Currently there are no approved therapies for this severe life-limiting disease. Integrating patient and caregiver experience data into drug development and regulatory decision-making has become a priority of the Food and Drug Administration and rare disease patient communities. METHODS: This study assesses parents' perceptions of their child's Sanfilippo syndrome disease-related symptoms using a research approach that is consistent with the Center for Drug Evaluation and Research (CDER) guidance. This study was initiated by the Cure Sanfilippo Foundation, and all steps in the research process were informed by a multidisciplinary advisory committee, with an objective of informing biopharmaceutical companies and regulatory agencies. We explored caregiver burden, symptoms with greatest impact, and meaningful but unmet treatment needs. Data were collected from 25 parents through three focus groups and a questionnaire. Transcripts were coded and analyzed using inductive thematic analysis, and descriptive analysis of quantitative data was conducted. RESULTS: Participating parents' children ranged in age from 4 to 36 years. Participants endorsed high caregiving burden across all stages of the disease. Analysis revealed multiple domains of unmet need that impact child and family quality of life, including cognitive-behavioral challenges in communication, relationships, behavior, anxiety, and child safety; and physical health symptoms including sleep, pain, and mobility. Participants reported placing high value on incremental benefits targeting those symptoms, and on a treatment that would slow or stop symptom progression. CONCLUSION: Even modest treatment benefits for Sanfilippo syndrome were shown to be highly valued. Despite high caregiver burden, most parents expressed a willingness to "try anything," including treatments with potentially high risk profiles, to maintain their child's current state.

13.
Mov Disord ; 36(6): 1342-1352, 2021 06.
Article in English | MEDLINE | ID: mdl-33200489

ABSTRACT

BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) currently has no approved treatments. OBJECTIVES: The Fosmetpantotenate Replacement Therapy pivotal trial examined whether treatment with fosmetpantotenate improves PKAN symptoms and stabilizes disease progression. METHODS: This randomized, double-blind, placebo-controlled, multicenter study evaluated fosmetpantotenate, 300 mg oral dose three times daily, versus placebo over a 24-week double-blind period. Patients with pathogenic variants of PANK2, aged 6 to 65 years, with a score ≥6 on the PKAN-Activities of Daily Living (PKAN-ADL) scale were enrolled. Patients were randomized to active (fosmetpantotenate) or placebo treatment, stratified by weight and age. The primary efficacy endpoint was change from baseline at week 24 in PKAN-ADL. RESULTS: Between July 23, 2017, and December 18, 2018, 84 patients were randomized (fosmetpantotenate: n = 41; placebo: n = 43); all 84 patients were included in the analyses. Six patients in the placebo group discontinued treatment; two had worsening dystonia, two had poor compliance, and two died of PKAN-related complications (aspiration during feeding and disease progression with respiratory failure, respectively). Fosmetpantotenate and placebo group PKAN-ADL mean (standard deviation) scores were 28.2 (11.4) and 27.4 (11.5) at baseline, respectively, and were 26.9 (12.5) and 24.5 (11.8) at week 24, respectively. The difference in least square mean (95% confidence interval) at week 24 between fosmetpantotenate and placebo was -0.09 (-1.69 to 1.51; P = 0.9115). The overall incidence of treatment-emergent serious adverse events was similar in the fosmetpantotenate (8/41; 19.5%) and placebo (6/43; 14.0%) groups. CONCLUSIONS: Treatment with fosmetpantotenate was safe but did not improve function assessed by the PKAN-ADL in patients with PKAN. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Pantothenate Kinase-Associated Neurodegeneration , Activities of Daily Living , Double-Blind Method , Humans , Pantothenate Kinase-Associated Neurodegeneration/drug therapy , Pantothenate Kinase-Associated Neurodegeneration/genetics , Pantothenic Acid/analogs & derivatives
14.
Blood ; 137(13): 1719-1730, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33150395

ABSTRACT

Krabbe disease is a rare neurodegenerative disorder caused by a deficiency in galactocerebrosidase. The only effective treatment is hematopoietic stem cell transplantation (HSCT). Approximately 85% of Krabbe disease cases are the infantile subtypes, among which ∼20% are late infantile. Prior studies have demonstrated that HSCT is effective for early-infantile patients (0-6 months of age) who undergo transplantation while asymptomatic, compared with those receiving transplants while symptomatic. However, no studies evaluated the efficacy of HSCT for late-infantile patients (6-36 months). In this prospective, longitudinal study, patients were evaluated at a single site according to a standardized protocol. Survival analysis was performed using the Kaplan-Meier method. Differences between groups were estimated using mixed regression models to account for within-person repeated measures. Nineteen late-infantile patients underwent HSCT (March 1997 to January 2020). Compared with untreated patients, transplant recipients had a longer survival probability and improved cognitive and language function. Gross and fine motor development were most affected, with variable results. Asymptomatic patients benefitted the most from transplantation, with normal to near-normal development in all domains and some gross motor delays. Among symptomatic patients, those with disease onset at >12 months of age had better cognitive outcomes than untreated patients. Those with disease onset at ≤12 months were comparable to untreated patients. We found that HSCT prolonged the lifespan and improved the functional abilities of late-infantile patients with Krabbe disease, particularly those who underwent transplantation before onset of symptoms. In addition, our findings support prior literature that reclassifies late-infantile Krabbe disease to be symptom onset at 12 to 36 months of age.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukodystrophy, Globoid Cell/therapy , Brain/growth & development , Brain/physiopathology , Child, Preschool , Cognition , Female , Humans , Infant , Infant, Newborn , Language Development , Leukodystrophy, Globoid Cell/physiopathology , Longitudinal Studies , Male , Treatment Outcome
15.
Genet Med ; 23(3): 555-561, 2021 03.
Article in English | MEDLINE | ID: mdl-33214709

ABSTRACT

PURPOSE: Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder caused by the deficiency of arylsulfatase A (ARSA), which results in the accumulation of sulfatides. Newborn screening for MLD may be considered in the future as innovative treatments are advancing. We carried out a research study to assess the feasibility of screening MLD using dried blood spots (DBS) from de-identified newborns. METHODS: To minimize the false-positive rate, a two-tier screening algorithm was designed. The primary test was to quantify C16:0-sulfatide in DBS by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The screening cutoff was established based on the results from 15 MLD newborns to achieve 100% sensitivity. The secondary test was to measure the ARSA activity in DBS from newborns with abnormal C16:0-sulfatide levels. Only newborns that displayed both abnormal C16:0-sulfatide abundance and ARSA activity were considered screen positives. RESULTS: A total of 27,335 newborns were screened using this two-tier algorithm, and 2 high-risk cases were identified. ARSA gene sequencing identified these two high-risk subjects to be a MLD-affected patient and a heterozygote. CONCLUSION: Our study demonstrates that newborn screening for MLD is highly feasible in a real-world scenario with near 100% assay specificity.


Subject(s)
Leukodystrophy, Metachromatic , Cerebroside-Sulfatase/genetics , Chromatography, Liquid , Humans , Infant, Newborn , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/genetics , Neonatal Screening , Tandem Mass Spectrometry
16.
Front Neurol ; 11: 563724, 2020.
Article in English | MEDLINE | ID: mdl-33178108

ABSTRACT

Background: Krabbe disease is an autosomal recessive demyelinating disorder resulting from deficiency of the lysosomal enzyme galactocerebrosidase. While blindness is often described as a characteristic finding of the disease, it is more common in the infantile phenotype, where vision loss typically arises in the late stages of disease. In comparison, reports of vision loss in late onset phenotypes are less well-described and may be subject to variation between genotypes. Methods: Charts of Krabbe patients with a confirmed diagnosis, who presented with substantial visual impairment, were retrospectively reviewed from a larger group of 199 Krabbe patients. Assessment of clinical status was obtained through review of neurological evaluations, neurodevelopmental assessments, ophthalmological evaluations, visual evoked potentials (VEP), electroretinogram (ERG), nerve conduction velocity (NCV) studies, auditory brainstem responses (ABR), and brain magnetic resonance imaging. Results: Five late onset patients with Krabbe disease (four juvenile and one late-infantile) were included. Three patients were homozygous for c.956A>G_p.Y319C, one was compound heterozygous for c.296+1G>T and c.956A>G_p.Y319C, and one was compound heterozygous for c.1186C>T_p.R396W and c.1901T>C_p.L634S. All patients were of Asian descent and presented initially with vision impairment. Notably, the patients did not present with marked appendicular spasticity or axial hypotonia and all five reached developmental milestones within the normal time frame. For neurophysiological testing, no patient showed abnormalities in NCV or ABR. However, abnormalities in VEP or ERG were seen in all patients. The one patient who underwent transplantation stabilized following treatment. Conclusions: Depending on their genotype, patients with late onset Krabbe disease may initially present with vision loss. Furthermore, patients with p.L634S and p.Y319C should be closely monitored for changes in vision and VEP. This knowledge will become increasingly important as physicians may otherwise overlook these signs and symptoms when monitoring children identified through newborn screening who have the variants described in this report.

17.
Mol Genet Metab ; 131(1-2): 181-196, 2020.
Article in English | MEDLINE | ID: mdl-32917509

ABSTRACT

Neurological dysfunction represents a significant clinical component of many of the mucopolysaccharidoses (also known as MPS disorders). The accurate and consistent assessment of neuropsychological function is essential to gain a greater understanding of the precise natural history of these conditions and to design effective clinical trials to evaluate the impact of therapies on the brain. In 2017, an International MPS Consensus Panel published recommendations for best practice in the design and conduct of clinical studies investigating the effects of therapies on cognitive function and adaptive behavior in patients with neuronopathic mucopolysaccharidoses. Based on an International MPS Consensus Conference held in February 2020, this article provides updated consensus recommendations and expands the objectives to include approaches for assessing behavioral and social-emotional state, caregiver burden and quality of life in patients with all mucopolysaccharidoses.


Subject(s)
Brain/metabolism , Mucopolysaccharidoses/therapy , Nervous System Diseases/therapy , Physical Therapy Modalities , Brain/pathology , Clinical Trials as Topic , Cognitive Dysfunction/physiopathology , Humans , Mucopolysaccharidoses/genetics , Mucopolysaccharidoses/metabolism , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Problem Behavior , Quality of Life
18.
Blood Adv ; 4(13): 3041-3052, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32634238

ABSTRACT

Children with many inherited nonmalignant disorders can be cured or their condition alleviated by hematopoietic stem cell transplantation (HSCT). Umbilical cord blood (UCB) units are a rapidly available stem cell source and offer great flexibility in HLA matching, allowing nearly uniform access to HSCT. Although reduced-intensity conditioning (RIC) regimens promise decreased treatment-related morbidity and mortality, graft failure and infections have limited their use in chemotherapy-naive patients. We prospectively evaluated a novel RIC regimen of alemtuzumab, hydroxyurea, fludarabine, melphalan, and thiotepa with a single-unit UCB graft in 44 consecutive patients with inborn errors of metabolism, immunity, or hematopoiesis. In addition, 5% of the UCB graft was re-cryopreserved and reserved for cord donor leukocyte infusion (cDLI) posttransplant. All patients engrafted at a median of 15 days posttransplant, and chimerism was >90% donor in the majority of patients at 1-year posttransplant with only 1 secondary graft failure. The incidence of grade II to IV graft-versus-host disease (GVHD) was 27% (95% confidence interval [CI], 17-43) with no extensive chronic GVHD. Overall survival was 95% (95% CI, 83-99) and 85% (95% CI, 64-93) at 1 and 5 years posttransplant, respectively. No significant end-organ toxicities were observed. The use of cDLI did not affect GVHD and showed signals of efficacy for infection control or donor chimerism. This RIC transplant regimen using single-unit UCB graft resulted in outstanding survival and remarkably low rates of graft failure. Implementation of the protocol not requiring pharmacokinetic monitoring would be feasible and applicable worldwide for children with inherited disorders of metabolism, immunity, or hematopoiesis. This trial was registered at www.clinicaltrials.gov as #NCT01962415.


Subject(s)
Cord Blood Stem Cell Transplantation , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Child , Fetal Blood , Humans , Transplantation Conditioning
19.
Int J Mol Sci ; 21(15)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707880

ABSTRACT

Mucopolysaccharidosis type II is a lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS) and characterized by the accumulation of the primary storage substrate, glycosaminoglycans (GAGs). Understanding central nervous system (CNS) pathophysiology in neuronopathic MPS II (nMPS II) has been hindered by the lack of CNS biomarkers. Characterization of fluid biomarkers has been largely focused on evaluating GAGs in cerebrospinal fluid (CSF) and the periphery; however, GAG levels alone do not accurately reflect the broad cellular dysfunction in the brains of MPS II patients. We utilized a preclinical mouse model of MPS II, treated with a brain penetrant form of IDS (ETV:IDS) to establish the relationship between markers of primary storage and downstream pathway biomarkers in the brain and CSF. We extended the characterization of pathway and neurodegeneration biomarkers to nMPS II patient samples. In addition to the accumulation of CSF GAGs, nMPS II patients show elevated levels of lysosomal lipids, neurofilament light chain, and other biomarkers of neuronal damage and degeneration. Furthermore, we find that these biomarkers of downstream pathology are tightly correlated with heparan sulfate. Exploration of the responsiveness of not only CSF GAGs but also pathway and disease-relevant biomarkers during drug development will be crucial for monitoring disease progression, and the development of effective therapies for nMPS II.


Subject(s)
Brain/metabolism , Glycosaminoglycans/metabolism , Iduronate Sulfatase/metabolism , Lipid Metabolism , Lysosomes/metabolism , Mucopolysaccharidosis II/blood , Mucopolysaccharidosis II/cerebrospinal fluid , Adolescent , Animals , Biomarkers/metabolism , Brain/pathology , Child , Child, Preschool , Dermatan Sulfate/blood , Dermatan Sulfate/cerebrospinal fluid , Dermatan Sulfate/metabolism , Enzyme Replacement Therapy , Female , Gangliosides/metabolism , Glycosaminoglycans/cerebrospinal fluid , Hematopoietic Stem Cell Transplantation , Heparitin Sulfate/blood , Heparitin Sulfate/cerebrospinal fluid , Heparitin Sulfate/metabolism , Humans , Iduronate Sulfatase/genetics , Iduronate Sulfatase/pharmacology , Infant , Inflammation/metabolism , Lysosomes/pathology , Male , Mass Spectrometry , Mice , Mice, Knockout , Mucopolysaccharidosis II/metabolism , Mucopolysaccharidosis II/therapy , Neurofilament Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
20.
J Child Neurol ; 35(10): 649-653, 2020 09.
Article in English | MEDLINE | ID: mdl-32484059

ABSTRACT

Krabbe disease is a progressive neurologic disorder caused by deficiency of the lysosomal enzyme galactocerebrosidase. The disease commonly has an early-infantile onset, but can have late-infantile, juvenile, or adult-onset phenotypes. Classic computed tomography (CT) and magnetic resonance imaging (MRI) findings in Krabbe have been well described. We report a patient, ultimately diagnosed with juvenile-onset Krabbe, who presented with atypical CT imaging and rapid disease progression. Our patient was a previously healthy and developmentally appropriate female who presented at 3 years 4 months of age with ataxia and motor regression that had progressed over the course of 6 weeks without an identifiable catalyst. CT, performed in the emergency setting, demonstrated extensive white matter hyperdensity. Subsequent MRI showed T2 hyperintensity of the white matter corresponding to the areas of hyperdensity on the CT, as well as enhancement of multiple cranial nerves bilaterally, suggestive of Krabbe disease. Enzymatic testing demonstrated low galactocerebrosidase activity and molecular testing of GALC revealed compound heterozygosity for 2 known pathogenic mutations, consistent with a diagnosis of Krabbe Disease. This included the common 30-kb deletion and a known pathogenic mutation associated with juvenile/adult-onset disease. Our patient's diffuse hyperdensity on CT offers a new radiographic finding to include in the repertoire of Krabbe imaging, and thus aide in the diagnostic evaluation. The rapidity of progression our patient demonstrated is additionally unique and should be considered in the identification of juvenile Krabbe as well as the complicated decision-making process regarding potential treatments.


Subject(s)
Leukodystrophy, Globoid Cell/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Tomography, X-Ray Computed/methods , Brain/diagnostic imaging , Child, Preschool , Disease Progression , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...